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Abstract. Recently, a class of Hermitian matrix ensembles was proposed by Mézard et al in
which the matrix elements depend on the Euclidean separation of coordinates drawn from a random
distribution. Matrix ensembles of this kind appear in a variety of physical contexts. In this paper,
we formulate and investigate the spectral properties of these Euclidean random matrix ensembles
within the framework of a supersymmetric statistical field theory. We discuss applications of these
results to various model systems.

1. Introduction

Theories and applications of Hermitian random matrix ensembles are ubiquitous in the
scientific literature [1, 2]. Leaving aside their intrinsic interest as a field of mathematical
research, the considerable attention paid to random matrix theories can, in part, be attributed
to the universality of the low-energy (or long-time) response of irregular or stochastic quantum
structures. The spectral statistics of random matrix ensembles provide a reference point for
the consideration of phase coherence phenomena in irregular quantum structures.

Recently, a new class of random matrix ensembles has been identified and investigated
by Mézard et al [3], where the elements of (in this case) a real symmetric N × N matrix are
specified by a given function of the Euclidean distances between a set of N points:

fij = f (ri − rj ). (1)

Here the coordinates are chosen at random from a d-dimensional box of size Ld , and f (r)

represents, for example, an interaction potential between the N identical particles. For
simplicity, the interaction is assumed here to depend only on the pairwise distance between
the points, although the formalism developed below can be extended to the consideration of a
more general two-body potential. From this Hamiltonian, we can generate a random matrix
ensemble by specifying the space of all possible configurations of the coordinates, in general
weighted by some probability distribution functionP(r). Such an ensemble, which depends on
the spatial separation of some coordinate distribution, has been christened a ‘Euclidean matrix
ensemble’ [3]. Distributions of this kind have been considered in a variety of physical contexts,
from the vibration spectra of glasses [4] and the statistical mechanics of the interacting classical
gas [5], to theories of combinatorial optimization [6], and the classical Coulomb gap [7].

To understand the nature of spectral correlations in this class of matrix ensembles, it is
useful to first place in context the generality or ‘universality’ of these results, and to comment
on the implications for potential applications. The current insight into theories of random
disordered systems allows us immediately to draw some intuition about the nature of spectral
correlations of the Euclidean matrix ensembles. To facilitate our discussion, it is useful to begin
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by briefly reviewing the properties of a quantum particle subject to a random impurity potential.
This system is specified by the random Schrödinger operator or Anderson Hamiltonian:

Ĥ = p̂2

2m
+ V (r) (2)

where p̂ = −ih̄∂ and V (r) represents a weak, say δ-correlated, random impurity potential.
In the quasi-classical limit (i.e. where the transport mean-free path � is greatly in excess

of the wavelength λ), the properties of the Anderson Hamiltonian can be separated according
to three characteristic energies or timescales. On timescales smaller than the typical transport
or scattering time τ associated with the random potential V , the particle dynamics is regular
or ballistic. However, on timescales in excess of τ a density fluctuation relaxes diffusively.
In this regime, mechanisms of quantum interference lead to a renormalization of the effective
diffusion constantD, and ultimately induce the complete localization of all states in dimensions
d � 2. In systems of finite extent, the (renormalized) diffusive dynamics is truncated at the
typical transport time tD = L2/D across the system, beyond which the particle relaxation is
‘ergodic’. Here one enters a universal regime in which all spectral and dynamical properties
become independent of the material properties of the system, i.e. at energy scales � � h̄/tD
ensemble average properties of the disordered system become indistinguishable from those of,
say, Gaussian distributed random matrix ensembles exhibiting the same fundamental symmetry.

With this in mind, let us turn to the consideration of the class of Euclidean random matrix
ensembles. As with any other random Hamiltonian (i.e. one which exhibits no continuous
or discrete symmetries), a Euclidean random matrix will belong to one of three fundamental
symmetry classes specified by the invariance of the Hamiltonian under time-reversal or spin
rotation—the ‘Dyson classification scheme’, e.g. the particular case of real symmetric matrices
belongs to the orthogonal ensemble. Moreover, as with usual random matrix ensembles (i.e.
ensembles defined on an invariant measure), for a given Euclidean matrix ensemble the average
density of states (DoS), and indeed any other single-particle property, is a non-universal
quantity, specific to the given distribution (i.e. it depends sensitively on the function f (r)).
In contrast, one can expect that, below some characteristic (system-dependent) energy scale
Ec, the statistical fluctuations of the DoS and wavefunctions are universal and depend only on
the symmetry class of the Hamiltonian, independent of the detailed properties of the system,
reflecting the ergodicity of the Hamiltonian dynamics.

However, keeping in mind the phenomenology of the disordered conductor, what can be
said about the properties at short and intermediate timescales? At short timescales one expects
the nature of density relaxation to depend sensitively on the range of the couplingf (r). In short-
ranged models, one expects to identify some characteristic scattering timescale τ beyond which
density relaxation is fundamentally diffusive. Here, the spectral and localization properties of
the system should parallel those of the Anderson Hamiltonian. In contrast, in systems which
exhibit long-ranged coupling one expects the ergodic regime to extend to high energy scales,
as it does in, say, Gaussian distributed random matrix ensembles. Finally, at the shortest
timescales one expects properties to be highly non-universal, and depend sensitively on the
precise short-distance nature of the coupling, density, etc.

With this background, let us review the existing theory of the Euclidean random matrix
ensembles. In [3] an ingenious procedure was devised to present the ensemble average of the
single-particle Green function in terms of a field integral involving a single replicated scalar
field (cf [5]). Their formalism gave access to a controlled expansion of the average DoS of the
bulk distribution, and provided a vehicle to study the asymptotic regions of the spectrum.

The aim of this paper is two-fold. Firstly, we aim to generalize the procedure of [3] to the
investigation of the two-particle properties (and higher) of the Euclidean matrix ensembles. The
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latter provide access to transport and localization properties, as well as fluctuation phenomena
of the matrix ensemble. Secondly, within the same formalism, we will expose a class of
soft modes of density relaxation which affect the long-time fluctuation properties of the
system. These soft modes mimic the massless diffusion modes of the quantum disordered
Anderson Hamiltonian, and provide a bridge between the Euclidean matrix ensembles and the
conventional theory of disordered conductors. For such purposes experience has shown that
the supersymmetric scheme is more convenient than the replica formalism. We will therefore
generalize the replica approach of [3] to the supersymmetric formalism of Efetov [8].

As mentioned above, for short-ranged potentials we will find the phenomenology of the
Anderson model to be applicable: all states are localized in dimensions d � 2, while for higher
dimensions there is a transition or mobility edge separating localized and delocalized states.
However, previous studies of Euclidean random matrix ensembles with a long-range coupling
(i.e. where lim|r|→∞ f (r) ∼ |r|−α) indicate that the situation is more subtle [9,10], and lead to
the following conclusions. If α > d , the localization properties are similar to the short-ranged
case, with complete localization for low dimensionalities and a localization–delocalization
transition in higher dimensions. However, if α � d, all states outside the band tails are found
to be delocalized, however weak the hopping matrix elements. In the particular case where
α = d the localization properties are predicted to be ‘critical’, with only a power law decay of
correlations. Although the formulation of the statistical field theory is general, in this paper
we will limit our considerations to short-ranged potentials, in which the low-energy effective
field theory for bulk states will assume a standard diffusive form.

This completes our introduction. The remainder of the paper is organized as follows. In
section 2 we formulate a supersymmetric field theory describing average properties of general
n-point correlation functions of the Euclidean random matrix ensemble. Here we will make
use of the approach of [3] to facilitate the ensemble averaging procedure. Subjecting the action
to a mean-field analysis in section 3, we obtain an expression for the non-universal average
DoS over a wide range of energy scales in section 4. These results are compared with numerics
for a variety of couplings. By developing an expansion of the action about the mean field, in
section 5 we cast the low-energy properties of the field theory as a diffusive, supersymmetric
nonlinear σ model. Finally, in section 6, we discuss the implications of these results for the
nature of the fluctuation phenomena and localization in this class of systems.

2. Formulation of field theory

In this section we formulate the generating function of spectral correlations of the Euclidean
random matrix ensembles as a statistical field theory. Following the now standard procedure
of Efetov [8], we employ a supersymmetric scheme to express Green functions (and their
correlators) of the Hermitian matrix fij as a functional field integral. Since we are interested
in the limit of high density, where the physics is expected to be insensitive to the precise value
of N , we will ultimately find it convenient to perform the ensemble average over the random
coordinate distribution using a grand canonical ensemble [3].

Statistical n-point correlators of the matrix [f̂ ]ij ≡ fij can be determined from the
generating function

ZN [J, {ri}] =
∫

D[�̄,�] exp[i�̄ · (f̂ − ε̂) · � + (�̄ · J + J̄ · �)] (3)

where ε̂ = {ε1, . . . , εn}, and � represent 2 × 2 × n × N -component supervectors. As
usual, the super-index (boson b, fermion f) structure of the elements � is used to enforce
the normalization ZN = 1. The remaining elements index the n points of the correlation
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function, the N components of the matrix Hamiltonian and, finally, two conjugate components
indexing a ‘time-reversal’ sector. At the expense of introducing some redundancy in the
formalism, the introduction of conjugate elements provides a convenient way of taking into
account the time-reversal symmetry of the Hamiltonian. Altogether, the supervector fields
assume the structure

� = 1√
2

(
ψ

ψ̄T

)
TR

�̄ = �TC C =
(
σ tr

1 0
0 −iσ tr

2

)
BF

. (4)

The source vectors J are defined to have the same structure, J T = (jT , j̄ )/
√

2. Defining
$ = −sgn(Im [ε̂]), convergence of the field integral demands ψ̄ = ψ†ι, where ι =
$ ⊗ EBF

11 + 1I ⊗ EBF
22 . (Here the projection matrix EBF

ij takes the value of unity on the element
ij in the BF space, and zero on all other elements.)

Formally, subjecting the generating function to the ensemble average entails integrating
over the particle positions weighted by some distribution function:

〈ZN [J ]〉 =
N∏
i=1

∫ L

0

dri

Ld
P (ri )ZN [J, {ri}].

In the simplest case the distribution function is taken to be uniform. Expressed in discrete
coordinate form, applying the ensemble average directly to the generating functional seems
problematic. To circumvent this difficulty, we follow the approach of [3] and present the
generating function using fields which do not depend explicitly on the number of particles.

Accordingly we define the fields

&(r) =
∑
i

�iδ
d(r − ri ) &̄(r) =

∑
i

�̄iδ
d(r − ri )

where& and &̄ are 2×2×n-component supervector fields, with the same supervector structure
as � and �̄. The change of variables can be enforced using a δ functional:

δ

[
&(r) −

∑
i

�iδ
d(r − ri )

]
=
∫

D'̄(r)ei
∫

dr '̄(r)[&(r)−∑i �iδ
d (r−ri )]

where, once again, ' and '̄ inherit the same supervector structure. When substituted into the
generating functional we obtain

〈ZN [J ]〉 =
∫

D['̄,']
∫

D[&̄,&]
∫

D[�̄,�]
N∏
i=1

dri

Ld
P (ri )e

iS

with

S =
∫

dr

∫
dr′ &̄(r)f (r, r′)&(r′) +

∫
dr ('̄(r)&(r) + &̄(r)'(r))

−
∑
i

[�̄i ε̂�i + �̄i('(ri ) + iJi) + ('̄(ri ) + iJ̄i )�i].

(With this expression, it is convenient to leave the term �̄i ε̂�i in its present form.)
Gaussian in the discrete variables �i and fields &(r), the functional integral can be

evaluated, whereupon one obtains

〈ZN [J ]〉 =
∫

D['̄,']

[ ∫ N∏
i=1

dri

Ld
P (ri )e

i('̄(ri )+iJ̄i )ε̂
−1('(ri )+iJi )

]
e−i

∫
dr
∫

dr′ '̄(r)f −1(r,r′)'(r′)

where f −1(r, r′) represents the inverse or Green function of the operator f (r, r′), i.e.∫
dr f −1(r1, r)f (r, r2) ≡ δd(r1 − r2). Note that, strictly speaking, at this stage we have not

assumed f (r, r′) to depend only on the Euclidean separation r − r′.
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So that this may be completely expressed in a way which does not depend on the number
of particles, it is also necessary to replace the source terms J with fields independent of N .
However, in doing so we will wish to be able to relate what were originally averages defined
for particular pairs of particles to the corresponding expressions involving these source fields,
where the identity of individual particles is lost. To achieve this we define within the integrals

J (r) =
∑
i

Jiδ
d(r − ri )

δd(r = 0)

i.e.

Ji = J (ri )
∂

∂Ji

=
∫

dr
δ

δJ (r)

δd(r − ri )

δd(r = 0)

where the symbol δd(r = 0) is defined explicitly below. This definition is unambiguous
provided ri �= rj , when what were the ith and j th particles become associated with J evaluated
at the same point in space. However, since this coincidence occurs with zero measure, such a
circumstance can be safely neglected.

As an example of this procedure, let us consider the general quantity∑
j1,...,jm

tr

[(
∂

∂J̄j1

⊗ ∂

∂Jj2

)(
∂

∂J̄j2

⊗ ∂

∂Jj3

)
· · ·
(

∂

∂J̄jm

⊗ ∂

∂Jj1

)
〈ZN 〉

]
.

Upon changing variables from Ji to J (r), this becomes

1

(δd(r = 0))m

∫
dr1, . . . , drm tr

[(
δ

δJ̄ (r1)
⊗ δ

δJ (r2)

)

×
(

δ

δJ̄ (r2)
⊗ δ

δJ (r3)

)
· · ·
(

δ

δJ̄ (rm)
⊗ δ

δJ (r1)

)
〈ZN 〉

]
(5)

where we can now write

〈ZN [J ]〉 =
∫

D['̄,']

[ ∫
dr

Ld
P (r)ei('̄(r)+iJ̄ (r))ε̂−1('(r)+iJ (r))

]N
e−i

∫
dr
∫

dr′ '̄(r)f −1(r,r′)'(r′).

The factors δd(r = 0) ≡ ∫
dq/(2π)d are expected to cancel with other factors which are

introduced when the functional derivatives are evaluated.
Although formally exact, in the following it will prove to be convenient to work with a

‘grand canonical ensemble’ defined by [3]

〈Z[J ]〉 =
(∑

N

αN

N !

)−1∑
N

αN

N !
〈ZN [J ]〉

where α = 〈N〉 represents an effective ‘fugacity’ of the distribution. Changing variables to
(' + iJ ) and ('̄ + iJ̄ ), one obtains 〈Z[J ]〉 = ∫

D['̄,']e−S , where

S = −α

[ ∫
dr

Ld
P (r)ei'̄(r)ε̂−1'(r) − 1

]
+ i
∫

dr

∫
dr′ ('̄(r)

−iJ̄ (r))f −1(r, r′)('(r′) − iJ (r′)). (6)

This expression, which has relied on no approximation, formally coincides with 〈ZN 〉 in the
limit N → ∞.

This completes our formulation of the field theory of the Euclidean random matrix
ensembles. We have succeeded in presenting the generating functional of the Green functions
as a supersymmetric field integral involving a single supervector field. This result differs from
that obtained by [3] in only two simple respects. The first is that this expression is cast within
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the framework of the supersymmetric formalism as opposed to that of replicas. Secondly,
and more importantly, it is generalized to account for two-point and higher correlations. Next
we will explore a range of parameters in which the low-energy properties of the system are
reduced to a simple effective action. In this limit, the connection between the Euclidean matrix
ensemble and the problem of the disordered metal will be made explicit.

For arbitrary values of the parameters εi , an evaluation of the field integral does not seem
feasible. The interaction of the fields generated by the ensemble average is highly nonlinear.
To proceed we are forced into looking for some appropriate approximation schemes. Such
a choice depends sensitively on the particular application, and on the form of the coupling
f (r). Drawing intuition from the strongly localized states of the disordered Anderson
Hamiltonian, at the extrema of the spectrum one expects the action to be dominated by
supersymmetry broken instanton configurations of the fields '(r), corresponding to rare or
‘optimal conformations’ of the effective ‘disorder potential’ fij †. However, for the bulk of the
spectrum one might expect the action to submit to a simpler, controlled perturbative expansion
of the fields around some stable mean field. Since our aim in this paper is to uncover the
phenomenology of the Euclidean ensembles, we will focus here on the latter, keeping in mind
the fact that many physically motivated problems will be concerned with the extrema of the
spectra.

To proceed, we will seek an expansion in powers of '̄'/ε̄, assuming the expectation of
this quantity to be small. Here ε̄ represents some reference energy scale (ε̄ > 0). The validity
of this expansion will be checked self-consistently. In addition, we will restrict attention to
short-range correlations in energy, when we can set

εi = ε̄ + ωi

where |ωi | � ε̄. In this approximation, an expansion of the action to quadratic order gives

S � i
∫

dr

∫
dr′ '̄(r)G−1(r, r′)'(r′) +

α

2

∫
dr

Ld
P (r)

(
'̄(r)'(r)

ε̄

)2

+
∫

dr

∫
dr′ (J̄ (r)f −1(r, r′)'(r′) + '̄(r)f −1(r, r′)J (r′)

−iJ̄ (r)f −1(r, r′)J (r′)) (7)

where

G−1(r, r′) = f −1(r, r′) − ρP (r)ε̂−1δ(r − r′)

represents the supermatrix Green function and ρ = α/Ld represents the particle density.
At this level, the form of the effective action bears comparison with the corresponding

field theory of the disordered metal. As with the Euclidean random matrix ensemble above,
one can construct the corresponding (source-free) generating function of n-point correlations:

Z[J = 0] =
∫

D['̄,']ei
∫

dr '̄(Ĥ−ε̂)'

where the superfields '(r) have the same index structure as that employed previously and Ĥ

represents the Anderson Hamiltonian defined by equation (2). Taking the random impurity
potential to be δ-correlated, with zero mean and correlation 〈V (r)V (r′)〉 = (h̄/2πντ)δd(r −
r′), where τ represents the scattering time and ν the average DoS, the ensemble average

† Very recently, an investigation of the profile of the tail states of the Euclidean random matrix ensemble with a
Yukawa-like potential has been undertaken by Zee and Affleck [11]. Their analysis showed that the tail states are
dominated by the optimal configurations of the effective action.
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Table 1. Mapping from the disordered metal to Euclidean RMT for parameters entering the action.
Note that corresponding quantities have quite different physical interpretations.

Disordered metal Euclidean RMT

Hamiltonian EF − p2

2m
f−1(q) − ρ

ε̄

Frequency source ω̂ = ε̂ − EF
ρω̂

ε̄2

Variance of random potential
h̄

2πντ

ρ

ε̄2

DoS at Fermi energy ν ≡ Sdp
d−1
F

(2πh̄)d

[
d

dp

(
p2

2m

)]−1

pF

aε̄

π
= Sdq

d−1
0

(2π)d

[
d

dq
f−1(q)

]−1

q0

Table 2. Comparison of various energy and length scales between the disordered metal and
Euclidean RMT.

Disordered metal Euclidean RMT

Level spacing 1
1

νLd

πε̄

aα

Thouless energy Ec

h̄D

L2
= h̄τ

L2d

[
d

dp

(
p2

2m

)]2

pF

ε̄3

2aρ2L2d

[
d

dq
f−1(q)

]2

q0

Scattering energy
h̄

τ
2aε̄

Mean free path �

[
d

dp

(
p2

2m

)]
pF

τ
ε̄

2ρa

[
d

dq
f−1(q)

]
q0

generates 〈Z[J = 0]〉 = ∫
D['̄,']e−S , where

S = −i
∫

dr '̄(r)

(
p̂2

2m
− ε̂

)
'(r) +

∫
dr

h̄

4πντ
('̄(r)'(r))2.

A comparison of this action with that of equation (7) reveals an immediate connection between
the field theory of the disordered metal, and the approximate theory of the Euclidean ensemble.
Within this mapping, the effective bare or clean Hamiltonian is identified with the operator
f̂ −1 − ρ/ε̄ and the strength of the scattering potential with ρ/ε̄2. This mapping is listed in
table 1, and using it some important energy and length scales are collected in table 2.

In principle, we could proceed with the analysis of the action (7) by forming an expansion
in the quartic interaction, and collecting the resulting series into a diagrammatic perturbation
theory. However, experience with the study of the theory of quantum transport in disordered
metals suggests that an effective low-energy theory can be developed in a non-perturbative
scheme. In particular, it is well established that the low-energy properties of the disordered
metal are governed by the interaction of two soft modes of density relaxation: ‘diffusons’
and ‘Cooperons’. With this background, we therefore proceed to analyse the action of the
Euclidean field theory (7) in a standard manner. However, since the precise connection between
the parameters of the two theories is sufficiently oblique, we believe that it is instructive to
develop the low-energy theory in some detail.

3. Mean-field analysis

As a first step in this program, we begin by subjecting the quartic interaction of the fields to
a Hubbard–Stratonovich decoupling, which is chosen so that the effective theory is present in
slow fluctuations of the decoupling field about a saddle point. Taking into account the two soft
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modes of the effective theory, this entails introducing a decoupling in two channels. Both are
contained within different elements of a 4n × 4n supermatrix field Q:

exp

(
− α

2

∫
dr

Ld
P (r)

(
'̄(r)'(r)

ε̄

)2)

=
∫

DQ exp

(
− α

4

∫
dr

Ld
P (r)strQ2 − α

ε̄

∫
dr

Ld
P (r)'̄(r)Q'(r)

)
.

Note that this expression is strictly not exact. In particular, as written, the decoupling makes
sense only if the fields Q are interpreted as slowly varying in space. The two soft modes of
the theory are both present in slow fluctuations of Q, and are duplicated as fast fluctuations;
roughly speaking, if we restrict Q to being slowly varying we must count these degrees of
freedom twice. The legitimacy of this approximation will be established presently on the level
of the saddle point. Finally, the symmetry of the fields ' induces a corresponding symmetry
in the fields Q which reflects that of the dyadic product ' ⊗ '̄. Accordingly, one finds

QT = CQCT .

Gaussian in fields ', an evaluation of the functional integral obtains Z = ∫
DQe−S−SJ ,

where

S[Q] = α

4

∫
dr

Ld
P (r)str Q2 − 1

2
str ln G−1 (8a)

SJ[Q] = iα

ε̄

∫
dr

Ld
P (r)J̄ (r)(1 + iQ(r))J (r)

+
iα2

ε̄2

∫
dr

Ld

∫
dr′

Ld
J̄ (r)P (r)(1 + iQ(r))G(r, r′)(1 + iQ(r′))P (r′)J (r′).

(8b)

In the leading order of expansion in ω̂/ε̄, the supermatrix Green function takes the form

G−1(r, r′) = f −1(r, r′) − ρP (r)

ε̄

(
1 − ω̂

ε̄
+ iQ(r)

)
δ(r − r′).

To establish the validity of the Hubbard–Stratonovich decoupling, we proceed by
subjecting the effective action to a saddle-point expansion. Varying the action with respect to
Q, and neglecting the sources J and ω, one obtains the saddle-point equation

Qsp(r) = − i

ε̄
Gsp(r, r). (9)

Taking the interaction potential f to be translationally invariant, and the distribution to be
uniform (P(r) = 1), the supermatrix Green function assumes a simple form. Applying the
ansatz that Qsp is diagonal in the internal indices and homogeneous in space, one obtains

Gsp(r, r
′) =

∫
dq

(2π)d

e−iq·(r′−r)

f −1(q) − (1 + iQsp)ρ/ε̄
(10)

where f −1(q) ≡ f −1(|q|) = ∫
dreiq·rf −1(0, r). In this form, one can interpret the saddle-

point equation as representing the self-consistent Born approximation for the self-energy.
Note that 〈' ⊗ '̄/ε̄〉 = −(i/ε̄)〈G(r, r)〉, and hence the limit in which the expansion of the
action (7) is justified corresponds here to the condition Qsp � 1.

Generally, the diagonal elements of Qsp exhibit both real and imaginary parts: Qsp =
X+iY , where X and Y are real diagonal matrices. Typically, one can expect these components
to be similar in magnitude. However, while the self-consistent solution of the saddle-point
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equation suggests that the shift in the real part of the self-energy is of the form Y ∝ 1I, the
analytical properties of the advanced and retarded components of the Green function demand
that X = a$. Hence, while Y � 1 (as demanded by the applicability of the expansion of the
Euclidean matrix action) the elements of Y simply bring about a small shift in the effective
‘Fermi energy’ ρ/ε̄ and can be safely neglected. A second issue concerns the existence of
the momentum integration itself. In particular, G(r, r′) will typically diverge if f (r → 0) is
also divergent. Clearly, in such situations, one must introduce an appropriate regularization to
exclude self-interactions (see, for example, the case of the Coulomb interaction below). More
generally, a divergence of G(r, r′) signals the breakdown of the self-consistent approximation
scheme and the applicability of the present approach. In this case one must seek an alternative
route to explore the nature of the effective action.

Applying the trial solutionX = a$ to the saddle-point equation, one obtains the following
equation for a:

1 = Sd

(2π)d

ρ

ε̄2

∫ ∞

0
dq

qd−1

(f −1(q) − ρ/ε̄)2 + (ρa/ε̄)2

where Sd is the d-dimensional solid angle. Since a � 1, one can expect the integrand to
exhibit a pole (or set of poles) close to f −1(q0) = ρ/ε̄. (For simplicity, let us assume that the
integral is dominated by a single pole.) If the resonance here is ‘sharp’, i.e. if the ratio of q0

to the bandwidth of the resonance is much greater than one, we can make the approximation
f −1(q) ≈ f −1(q0) + (q − q0)∂f

−1/∂q|q0 , and also extend the lower limit of this integral to
−∞. In doing so, one obtains the pole approximation

a = πSd

(2π)d

qd−1
0

ε̄

∣∣∣∣∣ ∂f
−1

∂q

∣∣∣∣
q0

∣∣∣∣∣
−1

� 1. (11)

The sharp resonance condition then corresponds to the limit

Sd

(2π)d−1

ρqd−2
0

ε̄2

(
∂f −1

∂q

∣∣∣∣
q0

)−2

� 1. (12)

The position of the pole in equation (10) implies that Gsp(r) ∼ e−r/2�, where the effective
‘mean free path’ � = (ε̄Ld/2aα)(∂f −1/∂q)q0 , so that the sharp resonance limit is equivalent
to the semi-classical limit q0� � 1.

As with the disordered metal, the matrix structure of the saddle-point equation results
in a manifold of degeneracy for Qsp for ω̂ = 0. In particular, it is simple to check that, by
subjecting the solution Qsp ≡ X = a$ to a rotation Q �→ TQspT

−1, where T represents
an arbitrary superunitary rotation, homogeneous in space, the saddle-point equation is left
invariant. Later, in section 5, by taking into account fluctuations around the saddle-point
manifold we will obtain a low-energy effective field theory for the Euclidean matrix system.
However, before doing so, we will explore the validity and ramifications of the self-consistent
Born approximation established above.

4. DoS and eigenvector correlations

To construct the low-energy action, it is convenient to subject the matrices Q to the rescaling
Q �→ aQ, such that the saddle-point manifold Q2

sp = 1I is parametrized by Qsp = T$T −1.
When investigating the ensemble average of the one-point function this reduces to a single
point Qsp = $ (since $ ∝ 1I). This makes the study of the average DoS an ideal test of the
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validity of the self-consistent Born approximation. To this end, let us begin by considering the
Green function of the Euclidean matrix:

ĝN = 1

ε̄ − f̂
= str

[
iEBF

11

(
∂

∂j̄
⊗ ∂

∂j

)
〈ZN 〉

∣∣∣∣
j=0

]
.

With this definition, the DoS of the matrix fij can be obtained as

ν(ε̄) = 1

π
tr Im ĝN (ε̄ − i0).

Expressed in terms of j (r) using equation (5), this becomes

ν(ε̄) = 1

πδd(r = 0)
Im

∫
dr str

[
iEBF

11 $

(
δ

δj̄ (r)
⊗ δ

δj (r)

)
〈Z〉

∣∣∣∣
j=0

]
.

If the functional derivatives are applied to the first of the two terms in (8b), the leading
contribution will generate a factor of δd(r = 0) which cancels with that in the denominator,
so that the expression as a whole is finite. On the other hand, if the contraction is applied to
the second of the source terms there will be an overall factor of 1/δd(r = 0) which can be
neglected in the thermodynamic limit. Altogether, one obtains

ν(ε̄) = aρ

πε̄

〈
Re

∫
dr str[EBF

11 ⊗ ETR
11 $Q]

〉
Q

(13)

where the projection matrix ETR
ij takes the value of unity on the element ij in the tr space, and

zero on all other elements. Substituting the saddle-point solution Qsp = $ into this equation
one obtains

ν(ε̄) = aα

πε̄
(14)

and from which we obtain the average level spacing 1(ε̄) = 1/ν(ε̄). (As usual, in the semi-
classical limit where the pole approximation is valid, the average DoS remains unaffected by
field fluctuations around the saddle point.) To test the validity of this result, let us consider its
application to several examples.

4.1. Gaussian potential

As a first example, let us consider the Gaussian potential

f (r) = ε0 exp

(
− r2

2σ 2

)
f −1(q) = 1

ε0(2πσ 2)d/2
exp

(
σ 2q2

2

)
which is the particular case studied in [3]. Poles q0 are solutions to the equationf −1(q0) = ρ/ε̄.
Since f −1 has a minimum at q = 0, this equation can only be satisfied if ε̄ is in the interval
0 < ε̄ < εmax ≡ ε0ρ(2πσ 2)d/2; outside of this region there is no support for the DoS, i.e. the
‘Fermi energy’ ρ/ε̄ is within an ‘energy gap’. Within this interval we find

q0 =
(

2

σ 2
ln
[εmax

ε̄

])1/2

and hence, applying equation (11),

a = πSdε0

2πd/2εmax

(
ln
[εmax

ε̄

])(d−2)/2
� 1.

Thus we find that, in d dimensions, the average DoS takes the form

ν(ε̄) = 1

ε̄

Sdαε0

2πd/2εmax

(
ln
[εmax

ε̄

])(d−2)/2
. (15)
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Figure 1. Log–log plot of the DoS for the Gaussian potential in two dimensions, with α = 500,
L = 1, σ = 0.1 and ε0 = 1. Data from numerical simulation is compared with the theoretical
prediction taken from the text.
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Figure 2. Log–log plot of the DoS for the Gaussian potential in three dimensions, with α = 800,
L = 1, σ = 0.1 and ε0 = 1. Data from numerical simulation is compared with the theoretical
prediction taken from the text.

The requirement that resonance is sharp (12) translates to the condition that a � ln[Emax/ε̄].
In two dimensions, these results, which reduce to the form,

ν(ε̄) = (L/σ)2

2πε̄

1

2ρσ 2
� 1 ε̄ � εmax

are compared in figure 1 with measurements taken from numerical simulation. Over a wide
range of the spectrum a good agreement between theory and result is observed. In three
dimensions the DoS reduces to the form

ν(ε̄) = (L/σ)3

√
2π2ε̄

(
ln
[εmax

ε̄

])1/2

and coincides with the result obtained in [3] for a high density expansion (with σ = 1,
ε0 = (2π)−3/2, and setting ‘P(ε) = ν(ε)/α’). Again, comparison with results shows good
agreement where the theory is valid (figure 2).

4.2. Exponential potential

As a second example, we consider a potential in which the interaction decays exponentially
with separation

f (r) = ε0e−κ|r|.
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Figure 3. Log–log plot of the DoS for the exponential potential in one dimension, with α = 500,
L = 1, κ = 100 and ε0 = 1. Data from numerical simulation is compared with the theoretical
prediction taken from the text.
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Figure 4. Log–log plot of the DoS for the exponential potential in two dimensions, with α = 2000,
L = 1, κ = 10 and ε0 = 1. Data from numerical simulation is compared with the theoretical
prediction taken from the text.

Solving the self-consistent equation, and making use of equation (11), in one dimension one
obtains

ν(ε̄) = ε0α

πε̄2

(
ε
(1)
max

ε̄
− 1

)−1/2

valid in the interval ε0κ/2ρ � ε̄ � ε
(1)
max ≡ 2ε0ρ/κ . Meanwhile, in two dimensions, within

the energy interval πε0κ/(54ρ)1/2 � ε̄ � ε
(2)
max ≡ 2πε0ρ/κ

2, the DoS is given by

ν(ε̄) = ε0α

3ε̄2

(
ε
(2)
max

ε̄

)−1/3

.

In both cases, over the range of validity of the expansion, agreement with numerical simulation
is good (see figures 3 and 4).

4.3. Coulomb potential

As a final example, let us consider the Coulomb potential in three dimensions:

f (r) = ε0r0

|r| .
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Figure 5. Log–log plot of the DoS for the regularized Coulomb potential in three dimensions,
with α = 2000, L = 1, r0 = 1 and ε0 = 1. Data from numerical simulation is compared with the
theoretical prediction taken from the text.

In this case, an application of the self-consistent theory above gives

ν(ε̄) = 4√
π

(ε0r0α

L

)3/2 1

ε̄5/2
.

Note, however, that the real part of expression (10) diverges at the upper limit of the momentum
integration for this choice of potential, and moreover that the particles have an infinite self-
energy—some kind of regularization† is required if the above result is to be valid. A simple
solution is to redefine the potential to be

f (r) = 4πε0r0

∫ qmax d3q

(2π)3

e−iq·r

q2

where qmax is set by the condition
∫ qmax d3q/(2π)3 = ρ. The only effect of this is to limit

the potential at short distances, so that f (0) remains finite. This will not affect our result so
long as q0 < qmax or ε̄ > ε0r0(16ρ/9π)1/3. Furthermore, the conditions for the validity of our
approximations, including that Y , the imaginary part of Q, remains small, are all satisfied if
ε̄ � ε0r0(16πρ)1/3. In this limit, the results are in agreement (figure 5).

4.4. Eigenvector correlations

The calculation of the DoS requires only the first of the two terms in the source action (8b),
but there are also quantities which depend on the second term. An example of these is the
eigenvector correlation function C(r) = 〈vα(r0)vα(r0 + r)〉, where vα(r) is the component of
the αth normalized eigenvector at position r, assuming this to be one of the coordinates {ri}.
This can be obtained from the one-point function using, for r �= 0,

νρ2C(r) =
∑
ij

∑
α

〈i|α〉〈α|j〉δd(r0 − ri )δ
d(r0 + r − rj )δ(E − Eα)

= 1

π
Im

∑
ij

〈i|ĝN (ε̄ − i0)|j〉δd(r0 − ri )δ
d(r0 + r − rj )

= 1

π
Im str

[
iEBF

11 $
δ

δj̄(r0)
⊗ δ

δj (r0 + r)
〈Z〉

]
.

† Despite the fact that the model is strictly not renormalizable, the regularization scheme employed here allows us to
stay within a domain in which the pole approximation is legitimate.
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Figure 6. Plot of the eigenvector correlation function C(r) for the Gaussian potential in two
dimensions, with α = 500, L = 1, σ = 0.1 and ε0 = 1, and at energy ε̄ = 0.006. A numerical
simulation (full curve) is compared with both the theory assuming a → 0 (dotted curve; theory
predicts a = 0.1), and also equation (16) evaluated at finite a (broken curve; numerical solution of
the saddle-point equation gives a = 0.129). At large r effects due to the finite size of the system
are apparent.

This depends only on the second of the source terms. Meanwhile C(0) = 〈vα(r0)vα(r0)〉 =
1/α is fixed by the normalization. Hence

C(r) =




1

α
r = 0

$

αaε̄
[(1 − a2)Im G(r) + 2aQspRe G(r)] r > 0

(16)

where G(r) = Gsp(0, r) is defined by equation (10).
In the limit a → 0 the higher-order terms in a can be neglected, and then C(r) =

($/αaε̄)Im G(r) is continuous at r = 0. However, it is infeasible in practice to numerically
diagonalize matrices which are very large, and this can constrain how small a can be made
when comparing the theory with numerical results. In that case, the other terms in (16) can
become significant and result in a discontinuity at r = 0. This is apparent in figure (6), where
this comparison is made for the Gaussian potential of section 4.1.

4.5. Discussion

In general, the domain of applicability of the self-consistent Born approximation defines the
same interval over which the quartic expansion of the action (7) is legitimate. The breakdown
of the saddle-point approximation requires a reconsideration of the full Euclidean field theory
action. In principle, one might still find that the extrema of the spectra are dominated by saddle-
point or mean-field configurations in which the Qsp assume instanton-like configurations,
reflecting optimal configurations of the coordinates. As with the usual stochastic Hamiltonians,
the analysis of the DoS for different interaction potentials above confirms that one-point
properties of the Euclidean matrix ensembles are non-universal. Staying within the domain of
applicability of the quartic expansion, in the following section we will investigate the role of
massless fluctuations of the fields Q on spectral correlations involving many-point functions.

5. Fluctuations and the σ-model

The degenerate manifold of saddle-point solutions implies the existence of massless or
Goldstone mode fluctuations of the fields Q. The effective low-energy field theory of these
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fluctuations can be found by expanding the action (8a) about the saddle-point solution, by
setting Q(r) = Qsp + δQ(r), where δQ can be divided into transverse and longitudinal
fluctuations. Transverse fluctuations δQt are those which anticommute with the saddle point
Qsp, and hence remain on the saddle-point manifold—they represent the Goldstone modes.
Longitudinal fluctuations δQl , on the other hand, commute with Qsp, and cause Q to move off
the manifold; consequently these modes are massive. Applying this expansion, one obtains

G−1(r, r′) = G−1
sp (r, r′) +

ρ

ε̄

(
ω̂

ε̄
− iaδQ(r)

)
δ(r − r′)

and the total effective action takes the form

S = a2α

4

∫
dr

Ld
str(δQ2) − iαa

2ε̄

∫
dr

Ld
str(Qω̂)

−
(αa

2ε̄

)2
∫

dr

Ld

∫
dr′

Ld
str[Gsp(r

′, r)δQ(r)Gsp(r, r
′)δQ(r′)] + · · ·

valid in the diffusive limit ω̂ � aε̄. In this limit fluctuations of Q vary slowly over the length
scale � on which G decays, so that we can employ the gradient expansion

δQ(r′) = δQ(r) + ∂αδQ(r) · (r′ − r)α + 1
2∂α∂βδQ(r) · (r′ − r)α(r

′ − r)β + · · · .
Note that, if we have a long-ranged potential, we must take more care, as an action local in
the fields Q may not be adequate (see [9]). Assuming that this is not the case, we proceed by
applying again the sharp resonance condition to evaluate the integral∫

dr

Ld
Gsp(r)AGsp(r)B = ε̄2

2α
(AB − QspAQspB).

Hence to zeroth order in the gradient expansion the transverse fluctuations are confirmed to
be massless, while the longitudinal fluctuations have a mass and can be neglected in the limits
a2α � 1 and ω̂ � aε̄. The first non-vanishing contribution from δQt occurs at second order
in the gradient expansion; again, this integral can be evaluated in the sharp resonance limit,
where one obtains the identity∫

dr

Ld
Gsp(r)C · rGsp(r)C · r = πSd

2(2π)dd

qd−1
0

Ld

(
ε̄Ld

aα

)3
∣∣∣∣∣ ∂f

−1

∂q

∣∣∣∣
q0

∣∣∣∣∣C · C

for matrices C which anticommute with Qsp.
Altogether, making use of the mean-field expression for the ensemble-averaged DoS (14),

we obtain the nonlinear σ -model action

S[Q] = πν

8

∫
dr

Ld
str[h̄D(∂Q)2 − 4iω̂Q] (17)

where supermatrices Q span the coset manifold Q = T$T −1 and

D = ε̄2L2d

2πh̄ναd

(
∂f −1

∂q

∣∣∣∣
q0

)2

denotes the effective diffusion constant. The length scale on which Q varies is given by√
h̄D/ω � �, justifying self-consistently the gradient expansion. Meanwhile the action for

the sources, SJ, takes the form

SJ = iα

ε̄

∫
dr

Ld
J̄ (r)(1 + iaQ(r))J (r)

+
iα2

ε̄2

∫
dr

Ld

dr′

Ld
J̄ (r)(1 + iaQ(r))G(r, r′)(1 + iaQ(r′))J (r′).
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As expected, within its domain of applicability, spectral fluctuations of the Euclidean
random matrix ensembles are described by a diffusive supersymmetric nonlinear σ model.
From this result we can immediately draw conclusions about the localization properties of the
states. In particular, in dimensions d � 2 all states are localized, while in dimensions above
two the system admits the existence of an Anderson transition from localized to delocalized
behaviour. Similarly, at energy scales 1,ω � Ec ≡ h̄D/L2, the action becomes dominated
by the zero spatial mode contribution:

S[Q0] = − iπ

21(ε̄)
str[ω̂Q0].

In this limit, spectral correlations become universal, independent of the nature of the potential
f (r), and coincident with those of, say, Gaussian distributed random matrix ensembles.

To be concrete, as an example let us consider the two-point correlator of DoS fluctuations:

R2 = 〈ν〉−2〈ν(ε̄ + �/2)ν(ε̄ − �/2)〉 − 1.

By making use of the approximation 〈ĝN (ε1 − i0)ĝN (ε2 − i0)〉 � 〈ĝN (ε1 − i0)〉〈ĝN (ε2 − i0)〉,
implied by the analytical properties of the Green function, we have the identity

〈ν(ε̄ + �/2)ν(ε̄ − �/2)〉 �
(

1

2π i

)2

Re 〈(tr[ĝN (ε̄ − �/2 − i0) − ĝN (ε̄ + �/2 + i0)])2〉.

Making use of the generating function derived above, one obtains

R2(�) = 1

64
Re

〈( ∫
dr

Ld
str($ ⊗ σBF

3 Q)

)2〉
Q

− 1.

With the corresponding two-point matrix source

ω̂ = −(�/2 + i0)

(
1 0
0 −1

)

this result can be identified with the standard integral expression for the DoS correlator [8].

6. Discussion

This completes our survey of the properties of the Euclidean matrix ensembles. While the
analysis above shows that the DoS is non-universal, depending sensitively on the nature of the
interaction potential f (r), at intermediate energy scales the bulk many-particle correlations
of the system coincide with those of weakly disordered conductors. In particular, as well as
the diffusive character of density relaxation, the Euclidean system inherits the localization
properties of the disordered metal. Moreover, the spectral properties exhibit characteristic
fluctuation phenomena and universal low-energy spectral correlations characteristic of random
matrix ensembles. In summary, the irregular lattice structure of the Hamiltonian becomes
visible only in the thermodynamic single-particle properties of the system.

Although the low-energy effective field theory (17) becomes invalid in the vicinity of
the extrema of the spectra, the fundamental action (6) on which it is based is exact. Further
investigation of the low-energy properties of the Euclidean matrix ensembles in the vicinity
of the band edge requires a fundamentally different non-perturbative approach to the effective
action whose basis depends on the particular nature of the interaction f (r) (see footnote on
p 12). The development of such theories remain the subject of future research.
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